Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang He, Can-Zhong Lu,* Ya-Qin Yu, Shu-Mei Chen, Xiao-Yuan Wu and Jiu-Hui Liu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.029$
$w R$ factor $=0.106$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Tetrakis(3-aminopyridine)dichlorocadmium(II)

The hydrothermal reaction of 3-aminopyridine and cadmium(II) chloride in alkaline aqueous solution gave rise to the title complex, $\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$. The $\mathrm{Cd}^{\mathrm{II}}$ atom is sixcoordinate with a distorted octahedral geometry and the Cl^{-} ions are in trans positions. The Cd atom lies on an inversion centre and the asymmetric unit contains two aminopyridine ligands and one Cl^{-}ion.

Comment

d^{10}-Metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Dai et al., 2002; Ouyang et al., 2003; Tao et al., 2003). While attempting to prepare a cadmium complex containing 3-aminopyridine ligands via a hydrothermal reaction, we did not obtain the expected compound but instead obtained the title compound, (I). This complex has now been characterized by elemental analysis and single-crystal diffraction analysis, and we report here the preparation and crystal structure of (I) (Fig. 1).

(I)

X-ray analysis reveals that (I) possesses a mononuclear structure with the Cd atom on an inversion centre, and the asymmetric unit contains two aminopyridine molecules and one Cl^{-}ion. The Cd atom is coordinated octahedrally (Table 1) by four N atoms from four 3-aminopyridine ligands and two Cl^{-}ions in trans positions. The $\mathrm{Cd} 1-\mathrm{N}$ bond lengths are in the range 2.373 (3)-2.401 (3) \AA. The $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ angles involving neighbouring atoms range from 83.68 (9) to $96.32(9)^{\circ}$, while the $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angle is 180°. One Cl^{-}ion acts as an acceptor for a weak $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl}^{1 i}{ }^{\mathrm{ii}}$ intermolecular interaction [symmetry code: (ii) $1-x,-y,-z$; Table 2].

Experimental

$\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(0.34 \mathrm{~g}, 1.5 \mathrm{mmol})$, 3-aminopyridine ($0.19 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{NaSCN}(0.16 \mathrm{~g}, 2 \mathrm{mmol})$ were mixed in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and heated

Received 27 September 2004
Accepted 8 October 2004 Online 16 October 2004
at 433 K for 3 d in a sealed 30 ml Teflon-lined stainless steel vessel under autogenous pressure. After the reaction mixture had been slowly cooled to room temperature, yellow prismatic crystals of (I) were produced, which were collected by filtration, washed with distilled water and dried in air (yield 65%, based on Cd). Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{CdCl}_{2} \mathrm{~N}_{8}$: C 42.91, H 4.32, N 20.02%; found: C 42.78, H 4.56, N 20.32%.

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$	$Z=1$
$M_{r}=559.77$	$D_{x}=1.571 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.7792$ (3) Å	Cell parameters from 142
$b=8.7583$ (3) \AA	reflections
$c=10.2481$ (2) \AA	$\theta=2.2-25.1^{\circ}$
$\alpha=71.159$ (2) ${ }^{\text {® }}$	$\mu=1.17 \mathrm{~mm}^{-1}$
$\beta=69.668$ (2) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=67.949$ (1) ${ }^{\circ}$	Prism, yellow
$V=591.76$ (3) \AA^{3}	$0.46 \times 0.30 \times 0.24 \mathrm{~mm}$
Data collection	
Siemens SMART CCD areadetector diffractometer	2081 independent reflections 2028 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.016$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-9 \rightarrow 7$
$T_{\text {min }}=0.566, T_{\text {max }}=0.755$	$k=-10 \rightarrow 10$
3146 measured reflections	$l=-12 \rightarrow 9$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{Cd} 1$	$2.6312(8)$	$\mathrm{Cd} 1-\mathrm{N} 3$	$2.373(3)$
$\mathrm{N} 1-\mathrm{Cd} 1$	$2.401(3)$		
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{i}}$	180	$\mathrm{~N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$90.63(6)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 1$	$83.68(9)$	$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{C} 11$	$91.17(6)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$96.32(9)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{C} 11$	$89.37(6)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	180
$\mathrm{~N} 3-\mathrm{Cd} 1-\mathrm{C} 1^{\mathrm{i}}$	$88.83(6)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.52	$3.347(4)$	162

Symmetry code: (i) $1-x,-y,-z$.
H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and allowed to ride on their respective parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
A view of (I), showing the atom-numbering scheme and with 30% probability displacement ellipsoids [symmetry code: (i) $-x,-y,-z$].

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the 973 Programme of MOST (grant No. 001CB108906), the National Natural Science Foundation of China (grant Nos. 90206040, 20073048, 20333070 and 20303021), the Natural Science Foundation of Fujian Province (grant Nos. 2002 F015 and 2002 J006) and the Chinese Academy of Sciences.

References

Dai J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. \& Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.
Ouyang, X.-M., Liu, D.-J., Okamura, T., Bu, H.-W., Sun, W.-Y., Tang, W.-X. \& Ueyama, N. (2003). Dalton Trans. pp. 1836-1845.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5.05). Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. \& Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.

